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A b s t r a c t  

Large amounts of information can be overwhelming and costly 
to process, especially when transmitting data over a network. A 
typical modern Geographical Information System (GIS) brings 
all types of data together based on the geographic component of 
the data and provides simple point-and-click query capabilities 
as well as complex analysis tools. Querying a Geographical 
Information System, however, can be prohibitively expensive 
due to the large amounts of data which may need to be 
processed. Since the use of GIS technology has grown 
dramatically in the past few years, there is now a need more than 
ever, to provide users with the fastest and least expensive query 
capabilities, especially since an approximated 80% of data 
stored in corporate databases has a geographical component. 
However, not every application requires the same, high quality 
data for its processing. In this paper we address the issues of 
reducing the cost and response time of GIS queries by pre- 
aggregating data by compromising the data accuracy and 
precision. We present computational issues in generation of 
multi-level resolutions of spatial data and show that the problem 
of finding the best approximation for the given region and a real 
value function on this region, under a predictable error, in 
general is "NP-complete. 

Keywords: Geographical Information Systems, Spatial Data 
Aggregation, Data Warehousing 

1 Introduction 

Geographical databases have been extensively studied 
over many years and many sophisticated systems have 
been developed (Orlowska, Lister and Fogg 1992). 
Geographic Information Systems (GIS) are "tools that 
allow for the processing of  spatial data into information, 
generally information tied explicitly to, and used to make 
decisions about, some portion of  the earth" (Demers 
1997). Thus a typical GIS stores various data about 
geographical areas represented as maps. 

Research also shows that an approximated 80% of  data 
stored in large corporation databases has a geographical 
component (Gonzales 2000). "The full benefits o f  using 
spatial data can be achieved by combining the data from 
different sources covering a common region" (Orlowska 
and Zhou 1999). Many real life applications would 
substantially benefit from introducing spatial 
representations of  the data, rather than the currently 
available textual references to the names and descriptions 
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o f  the regions, their sub-regions and so on. The 
introduction o f  a spatial component would undoubtedly 
be most powerful in a Data Warehousing environment, 
where vast amounts o f  historical data are queried for 
decision making purposes. The decision making process 
could thus be further enhanced by the addition of  spatial 
representation o f  data and its patterns. Currently, 
however, the cost and response time of  GIS queries is a 
limiting factor for the GIS itself let alone for Spatial Data 
Warehouse performance. 

The increasing importance of  spatial data analysis 
(Shekhar, Chawla and Ravada 1999), the need for 
efficient and cost effective data warehousing and the 
rapid growth o f  GIS usage suggests that there is a need 
for a solution which will reduce the query cost and time 
in Geographical Information Systems in turn making it 
feasible to integrate a GIS with a Data Warehouse. 

A map in a GIS is made up of  a set o f  pre-defined 
regions. We assume that for each spatial region on a 
given map, data such as pollution, precipitation, 
temperature or vegetation cover is collected from various 
sources (such as surveys, aerial photos and sensors) and 
stored in the GIS. Such data normally is expressed as a 
real value function(s) defined over the specified region, 
often with a single value for a component polygon of  the 
region. The granularity o f  the data is naturally dictated by 
the way the data is collected and how it is intended to be 
later used in applications. The data can then be queried 
with different levels o f  precision subject to specific 
application requirements. 

Querying the original data, however, can be an expensive 
and time-consuming task. In practice, there may be a 
large number o f  maps (regions) stored in a GIS, 
furthermore each such region may be made up of  vast 
amounts of  sub-regions (polygons). Each polygon on 
such a map will have associated with it a value for each 
function being measured (e.g. temperature) at a given 
point in time. I f a  user, for example, wants to compute the 
average temperature o f  the entire region depicted in the 
temperature map at a given point in time, then the 
computation o f  the result would involve retrieving the 
value for each region and then calculating the average. In 
practice, this can be 'serious' computation since vast 
amounts o f  data must be processed. The question is 
whether there is an effective way to reduce this 
computation requirements at run time and provide 
controlled quality o f  service for the user. 

In this paper, we approach the problem o f  aggregation 
query cost at run time. The response time reduction can 
be achieved by storing materialised views of  the original 
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data. This in turn requires additional computation prior to 
the query execution and additional memory requirements 
for storing the pre-defined data views. We focus on 
computational analysis of methods to achieve the best 
data approximation within the pre-specified range of data 
precision. 

1.1 Related Research 

Current research into the problem of Spatial Data 
Aggregation or Spatial Data Warehouse Design is not 
extensive (Han et al 1998, Stefanovic 1997, Zhou et al 
1999). This area, however, draws on several well 
established streams of research; relational Data 
Warehouse design (Baralis et al 1997, Golfarelli et al 
1998, Golfarelli and Rizzi 1999, Gupta 1997, Indulska 
2000, Inmon 1996, Theodoratos et al 1999, Yang et al 
1997), Data Warehouse maintenance (Colby at al 1996, 
Gupta et al 1993, Mumick et al 1997, Quass and Widom 
1997) and geographical database systems (Demers 1997, 
Gonzales 2000, Orlowska et al 1992, Orlowska and Zhou 
1999, Shekhar et al 1999). 

Han and Stefanovic (1998) propose an algorithm which 
attempts to reduce the number of polygons which have to 
be processed in order to answer a query. Only queries 
which require the spatial merge operation of  a region are 
considered. The authors make the observation that pre- 
merging for all records in all views is too expensive but 
not pre-merging is also not a desirable solution. The aim 
is to discover which sets of  polygons should be pre- 
merged and stored and which can be merged on-line. 

The algorithm presented by Han and Stefanovic takes as 
input a partially materialised spatial data cube, the 
expected view access frequency and a region depicting 
the connectivity of  the polygons. For each view and each 
record in the view, the 'spatial region' cell containing the 
polygons for merging is intersected with all other 'spatial 
region' cells in the view and with 'spatial region' cells in 
the remaining views in the data cube. This process is 
repeated for every cell in every view. The method is not 
efficient when a large number of views is considered. 
Also intersection of cells from different views can be 
meaningless in some cases, resulting in materialisation of 
polygons which in fact are never queried together in 
isolation from other polygons. Additionally, this method 
is not very accurate since it relies on query frequency data 
which cannot be fully predicted. 

Zhou, Truffet and Han (1999) propose a method for 
efficient merging of a set of  selected polygons in order to 
obtain the boundary of the set. The authors make the 
observation that not all polygons belonging to the set of 
mergeable polygons actually contribute to the boundary 
of the target polygon. The method thus avoids fetching all 
polygons in the set from the database, fetching only those 
which contribute to the boundary. Since neighbouring 
polygons will share some identical line segments, the 
algorithm selects boundary cells by selecting polygons 
which consist of lines for which no identical lines exist. 
The boundary polygons are then merged by removal of  
identical line segments between neighbouring polygons. 
This algorithm significantly reduces the cost of  polygon 

amalgamation. This approach, however, merges only the 
selected set of polygons and does not determine which 
polygons should actually be merged, this selection is 
determined by the user. Although, the problem of spatial 
data aggregation is related to amalgamation of polygons it 
is different from our focus. Our focus is on the selection 
of polygons will need to be aggregated without 
consideration of  how they will actually be amalgamated 
in the end. 

1.2 Contribution and Organization of the 
Paper 

In this paper, we propose a concept for aggregation of 
spatial data based on the 'similarity' of  values of  a 
function defined over the region. Initially, we limit our 
consideration to only one real function and assume that 
the function may have only one value for each polygon in 
the region. We prove that the best aggregation with 
respect to the number of resulting new polygons for a 
given function, in general is an NP-complete problem. 

The method presented aggregates polygons and computes 
a new aggregated function of a region, based on the initial 
values of the function which is being measured over that 
region (for example temperature or precipitation). We 
show that such aggregation can be performed at different 
levels of  granularity resulting in a number of aggregations 
for a single function, each with a known guaranteed error 
measure. These pre-computed data views can then be 
used to provide a choice (within the available selection of 
views) of  Quality of  Service (QoS) to the user thereby 
reducing the computation cost and time of certain queries. 
It is important to note that the aggregation is performed 
without consideration of  queries or query frequencies 
which are difficult to predict. Rather, it is based on the 
behaviour of  the function being measured as well as the 
physical connectivity of  the polygons. 

The remainder of  the paper is organized as follows; 
Section 2 provides the motivation for this work. Section 3 
introduces the problem scope, the formalisms and the 
problem statement. In Section 4 the aggregation process 
is presented (along with an example) and it is shown to be 
N-P-complete in Section 5. We conclude our findings in 
Section 6 and discuss planned future work in this area in 
Section 7. 

2 Motivation 

Let us first consider an example. We assume a relation 
PRECIPITATION(pID, date, prec amount) exists, which 
stores the daily precipitation (in millimetres) for each 
polygon in a given region R.. 

The region being considered is depicted in Figure l(a). It 
is divided into a number of  polygons, where the value 
depicted for each polygon is the value of the precipitation 
function for that polygon at a particular point in time. 
Naturally, a region can be partitioned into thousands of 
polygons and it may have many different functions 
defined over it; however this simple example will suffice 
in order to demonstrate the general problem scope. Let us 
now consider a query which requires the average 
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Figure h a) Initial region R partit ion, b) Region R part i t ion after polygon aggregation 

precipitation on a given day of  areas that received more 
than 9 millimetres of  rain. 

In order to evaluate this query, all polygons which 
received more than 9 millimetres of  rain on the specified 
day are accessed and then the average precipitation is 
calculated. This requires accessing 12 polygons and 
calculating the average o f  12 values. However, after 
closer observation, it can be seen that some neighbouring 
polygons actually have the same precipitation values. 
These neighbouring polygons can therefore be aggregated 
without loss of  accuracy. This results in a new partition of  
polygons for the region R (see figure l(b)) and requires 
storage of  the new polygon identifier values and their 
respective precipitation values, however the original 
partition of  region R is still retained in the database. I f  we 
assume that such aggregation took place, in order to 
answer the above query only 6 polygons need to be 
accessed and the average o f  6 values calculated as 
opposed to 12 polygons and their respective values. 

In this example, only the polygons with equal values of  
the function were aggregated. We can however introduce 
a different granularity of  aggregation which will result in 
an aggregation with some loss of  accuracy. For example, 
one can aggregate neighbouring polygons where the 
difference of  precipitation is no more than one millilitre. 
One such possible aggregation is shown if Figure 2. In 
this case the precipitation value for the aggregated 
polygons is the average value of  the precipitation function 
of  polygons which now form the new polygon. However 
it can be seen that there are many possible aggregations in 
this case, the problems associated with finding an 
aggregation (also referred to as a "cover") will be 
addressed in Section 4. 

The above described process results in a hierarchy of  
aggregations for the region R, where each aggregation has 
a different error measurement associated with it 
(discussed in Section 7). When the user issues a query 
which concerns the region R and the function which was 
used in the aggregation o f  the polygons in that region, the 
user is presented with a number of  available and already 
computed aggregations for the region and the particular 
function. As previously stated, each such level of  
aggregation has associated with it an error measurement. 
For some user queries the data accuracy level required 
may be 100%, however for many queries complete 
accuracy is not required and may be relaxed to an extent. 
In either case, depending on the requirement of  data 

accuracy for a given user query, the user chooses the 
appropriate aggregation level (appropriate according to 
the error measurement the user is prepared to accept) for 
region R from the aggregation hierarchy in order to 
answer the query, as depicted in Figure 3. 

Thus the lower the accuracy o f  the result that the user is 
prepared to accept, the lower the cost and response time 
of  the query and the "quality" of  evaluation. The creation 
of  such aggregation hierarchies, however, has a cost 
associated with it. Once such a hierarchy is created it will 
also have to be maintained as the underlying data 
changes. Therefore this process is beneficial when the 
total cost reductions o f  all queries executed on the 
hierarchy o f  aggregations outweighs the cost o f  creation 
and maintenance o f  the aggregation hierarchy. However, 
considering that once such a hierarchy is computed it will 
support multiple queries as well as multiple users, the 
cost o f  computation should be offset by the savings in 
query cost (this o f  course depends on the frequency of  
query execution). 

Figure 2: Region R partition after another level of 
polygon aggregation 

3 Problem Definition 

Let us now introduce the formalism necessary to reason 
about levels o f  aggregations. 

We define a region R with an initial (also referred to as 
level zero) non-overlapping partition o f  polygons ~ ,  
where ..0 = {VOl, p0 2 ..... pO%} is a collection of  polygons 

which together form region R. That is, 

R = kJP°i 0 and 

V( i , j )  i, j e  I°1 P°i0 f'~P% o = O ,  

where I ° = { 1, 2 . . . . .  no) is the level zero index value. 
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Figure 3: A basic depiction of  the querying process. 

The index is required since aggregations at different 
levels may consist of  a different number of  polygons (i.e. 
different values of  n). 

We can therefore introduce the next level partition (the 
level one aggregation) in a similar manner; 

p l=  {pll, pl 2 ..... plnl } suchthat 

R = u p l i  I and 

V(i,j)  i , j~ I '  I pl i l  ('hplj 1 = O; 

where 11 = {1, 2 ..... nl}. 

Naturally, the level one partition pl is obtained through 
aggregation of  the polygons in the initial po partition and 
it is important to note that a polygon can in itself be a 
collection o f  polygons without any loss of  generality. 
Also, since aggregation o f  polygons at any level cannot 
produce an aggregation level with more polygons than in 
the underlying level, there is a restriction on the indexes 
of  each aggregation level such that the number of  
polygons at the level k partition is greater or equal to the 
number of  polygons at level k+l  partition, i.e. n k> n k÷l. 

Let us now illustrate the above concept through the use of  
an example. We consider a region R which has an initial 
partition consisting of  five polygons, 

i.e. 

1~= {pOi, p02, p03, p°4, p°5} ' 

as depicted in Figure 4(a) below. Let us also assume that 
a polygon aggregation has taken place resulting in a level 
one cover of  region R consisting of  three polygons, that 
is 

p1={P11, p12, PI3} , 

as depicted in Figure 4(b) below. It is of course important 
to note that the values of the function defined over these 
polygons were also aggregated according to some 
aggregation function (in this paper only the average 
function is considered). 

Hence, the aggregation produced a new level where 
polygon p° l still exists in the same form as in the level 
zero partition, but where polygons P° 2 and P° 3 w e r e  

merged to form a new polygon P'2 and their vales were 
aggregated. Likewise, polygons P 04 and p 05 were merged 
to form a new polygon pl3 and also had their values 
aggregated. While the purpose of  this paper is not to state 
how the polygons are merged but which polygons are 
actually merged, we would like to point out that the 
method presented by Zhou, Truffet and Han (1999) can 
be used to accomplish this merging process. 

p° 1 --) pl l 

{pO2k.J p03} ~ Pl 2 

{p04u p05} ~ pI3. 

Figure 4. a) Level zero partition of  region R b) Level 
one aggregation of  region R 

Up to this point we have not specified any conditions 
which manage the merging process but rather focused on 
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what merging is and how subsequent levels will be 
constructed. 

Let us now introduce the next level of  formalisation. We 
define a function 

f :  {pki} ")  ~{, ~' iEIkf(pki) = vki, 

which for each level k pol~,gon Pk i o f  a region R returns 
the real number value v i which is the value of  the 
measured function f for polygon Pk i. 

We introduce a partition or aggregation level as a 
partition pk! ~, which corresponds to a level k partition 
which was obtained by aggregating polygons of  level k-1 
based on the values of  the function f with an "similarity 
value" of  e. The similarity value is used to determine 
whether any two neighbouring polygons can actually be 
aggregated to form one new polygon. Thus if we, for 
example, assume that e =m where m~91 (where 9t is the 
set of  all real numbers), then only neighbouring polygons 
where the difference of  the values of  function f is less 
than or equal to m can be aggregated. Thus, for any 
partition pk! 8, the following must always hold for each 
element pk in partition if'/~ : 

V(i, j) i, j ~ I k'l [ f(Pk-li) - f(pk-lj) [ < e and 

(pk-li, pk-lj) are connected. 

Connectivity in this context is assumed to exist if any two 
polygons share a polygon boundary which is at least one 
point. 

Additionally, each polygon, at any level k o f  the 
aggregation hierarchy, has associated with it a value of  its 
physical area, such that 

A:{pki} ")  R V iEI k A(pki) = aki; 

which represents the area o f  polygon Pi belonging to a 
level k aggregation. This physical area can be used in the 
aggregation process to increase accuracy by calculating 
the new polygon's function value based on the area 
weighted underlying polygon values. 

We also define an average function f "AV~ (pkm) for each 
element Pk m of  a partition pk/,~, which calculates the value 
of  the function f for the element pkm. This is calculated as 
the average (weighted by area) o f  the function f values of  
the underlying polygons at level k-1 which were 
aggregated to form Pk m based on an similarity value of  e. 

f ~AVO(P k ) =Z ak'li * vk-li ] Z ak'li where i~ J c_ I k-I 

Finally, we define the error o f  a partition ~I.~, as 
E(ff'/.~) which is the average difference in function values 
weighted by polygon area (see Section 7). 

Thus given a region R, a function f and similarity values 
el, e2 . . . . .  E;k, we are now required to find a sequence of  

partitions (level 1, fAVG, el), (level 2, feJAVG, e2) . . . .  (level 

k, f ek'lAvo, ek) such that each partition provides the best 

approximation of  the function f ,  felAV ~ , fek'JAW 
respectively. 

The "best approximation" can be viewed from three 
different perspectives however. First o f  all, one may be 
interested in finding a partition such that there exists a 
minimum number of  polygons. This requires finding ALL 
possible partitions and selecting the ones with the 
minimum number of  polygons. Such a task is very hard 
for a region with even 10 polygons let alone a larger 
region in a GIS. 

For instance, starting at the initial partition, we require a 
level one partition (level 1, f ,  el) such that it is a 
minimum partition and it satisfies the following 
condition: 

min Z (Z I feAV6(P l j) _ vOi I. 
j i 

Secondly, one may chose to impose a restriction on the 
above, by specifying the number of  polygons which is to 
be present in the generated cover. Therefore instead of  
finding the minimum cover, the problem now becomes 
finding a cover with k elements while still minimizing the 
difference o f  values between the newly aggregated 
polygons and their underlying polygons. 

min Z (~  I feavo(P lk) -- V°i 1. 
k i 

Lastly, one may specify a range of  acceptable error of  the 
generated cover. While the first two variations of  the 
problem are similar to each other, this one is quite 
opposite. In this problem variation the importance shifts 
from the number of  elements in the cover to the actual 
acceptable error o f  the cover. 

In this paper we concentrate on finding the minimum 
partition of  a region. 

4 Generat ing  M i n i m u m  Reg ion  Part i t ions  

A minimum partition o f  a region is a partition which has 
the smallest number of  elements, or polygons, fi'om all 
other possible partitions which are created based on the 
same conditions. Thus, if we were to create all possible 
partitions at a particular level o f  aggregation, the 
minimum partition would be the partition(s) which had 
the smallest number of  polygons among all generated 
partitions. 

In this section we explain and show in detail (through the 
use of  an example) the process of  finding a minimum 
partition without generating all possible partitions. This is 
done through the generation of  a number of  graphs and 
matrices. Initially the connectivity graph and the e-graph 
(as well as their corresponding adjacency matrices) are 
generated which show the physical connectivity of  the 
polygons and the function behaviour respectively. These 
are then used to construct the e-connectivity-matrix and 
it's corresponding graph, which shows both the 
connectivity and function behaviour. The e-connectivity- 
graph is then extended, due to reasons explained later on, 
to allow partition generation. 
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We illustrate the process with the use of the following 
example. We consider a region R with a polygon 
partition IP = {p0, p02, pos, p04, po  } shown in Figure 
5 below where the values of  a functionfbeing measured 
over R are shown in bold. Let us also assume that the 
value ofe  is 1 and that all polygons are of the same size. 

It is important to note that not all of the presented 
graphs/matrices have to be generated in order to find a 
minimum partition. One could for example start the 
process by constructing the e-connectivity-matrix without 
constructing the connectivity and e-graphs. The 
generation of these, however, is shown because it is 
easier to construct the e-connectivity-graph by 
constructing it from the e-connectivity-matrix which can 
in turn be automatically generated from the connectivity 
and the e-matrices. 

Figure 5. A region R with an initial level zero  polygon 
par t i t ion ,  to . 

4.1 P a r t i t i o n  C o n s t r u c t i o n  P r o c e s s  

Given a region R with a polygon partition pk, a graph can 
be constructed which represents the connectivity of the 
polygons in pk. We call such a graph a connectivity graph 
Gc(g). 

Gc(. -~) = (V, E) 

where each vi in V represents a polygon pki in ~ ,  and 
where vertices (vi, Vj) are connected by an edge in E iff 
the polygons pki and p~ are directly connected to each 
other in t~. 

Having constructed the connectivity graph Gc(/;') we 
generate an adjacency matrix from Gc(.t~), called a 
connectivity matrix Mc(Gc(X'k)). 

To illustrate the above, we construct a connectivity-graph 
Gc(P °) as well as its adjacency matrix Mc(Gc(IP)) for the 
region shown in Figure 5. This graph and its 
corresponding matrix is shown in Figure 6 below. As 
previously stated, there exists and edge between any two 
nodes in this graph if the polygons represented by those 
nodes are physically connected in Figure 5. We also 
construct another graph which represents the difference 
of values between the polygons with respect to e. This 
graph is called the e-graph and is referred to as 

G~(~/~) = (V, E) 

where any two vertices (Vi, Vj) in Ge(pkf 6) are connected 
by an edge in E iff ~Pi) -f(Pj)l  < e, without any 

assumption of  connectivity. Once again we generate an 
adjacency matrix M~(G~(x'kl,)), called the e-matrix. 

::@ 

.£L 
( i l l 0  

1 1 0 1 0 

1 0 1 1 1 

1 1 1 1 1 

k,~... 0 1 1 ..~ 

Figure 6. The connectivity-graph Gc(P  °) and it's 
corresponding connect ivi ty-matrix  Mc(Gc(XP)). 

Applying this process to the example, we proceed to 
construct the e-graph G~(~; 1). After the e-graph is 
constructed, we construct the adjacency matrix 
M~(G~(~I 1)); both of  which are shown in Figure 7. Note 
that edges in this graph exist only if the difference of 
function values between the two polygons is less than or 
equal to 1. 

1 1 0 0 

® 

1 1 1 1 0 

0 1 1 1 0 

0 1 1 1 0 

0 0 0 0 . . .~  

Figure 7. The c-graph Gs(P°! a) and its corresponding 
8-matrix Ms(Ge(P°/t)). 

Having generated the connectivity-matrix Mc(Gc(l~)) 
and the e-matrix Mc(G~(Pkf ~)), we can now generate the 
e-connectivity-matrix Mc~(Gc~(-t#f ~)). 

The e-connectivity-matrix is a n*n matrix where n = IV[ 
in Gc(~). Each element aij in Mc~(Gc~(Pkf ~)) will have a 
value of either of (0,1); 
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aii= 0 iff (vi, v i) are not connected in the connectivity- 
graph Gc(.td')) OR if (vi, vj) are not connected in the e- 
graph G~(~i ~); 

aij = 1 iff (vi, vj) are connected in the connectivity- 
graph Gc(ff')) AND if (vi, vj) are connected in the e- 
graph G~(.LIF! ~). 

The e-connectivity-matrix Mc,(Gc~(gl 0) can be easily 
generated by a simple operation on matrices 
M,~(G~(.td'/ 0)  and Mc(Gc(.Pk)). Based on the above 
definition of  Mc~(Gc~(ff'! ~)), it can be seen that the only 
time ai] will be equal to 0 will be when the product of  a 0 
in Mc(Gc(ff')) and aij in Ms(Go(If'! ~)) is equal to 0. 
Likewise, the only possibility of  aij being equal to 1 is 
when the product of  ai~ in Mc(Gc(~))  and aij in 
M~(G~(Zd' I ~)) is equal to 1. 

Thus we introduce an operation ® which is a 'special' 
multiplication of  two n*m matrices. This operation 
reflects the conditions of  polygon merging. Namely, it 
expresses the conjunction of  the two conditions 
introduced above. 

Let us consider a n*m integer matrix A and an equally 
sized integer matrix B. We can define operation ® as 

A ~-all al2 .... alm'~ 

. . . .  

11' bll 

= ¢ [ a2~* b21 

1 • anl* bnl 

follows; 

® 

BfOlll, al2 .... blm~ 

Qbnl b,a .... b m j  

a12* b12 ...... aim* b l m ~  

a22" b22 ...... a2m* b2m [ 

1 . . . . . . . . .  * * ,  

a~* bn2 ...... am* b ~ J  

We now generate Mc~(Gc~(.t~ l ~)) by applying ® to 
~(c~(gf  ~)) and lv~(Gc(~); 

~v~:~(Gc~(gf 0) = M~(G~(~ 0)® Mc(Cc(g)). 

From the e-connectivity-matrix we are now able to 
generate the e-connectivity-graph. Gc~(.~/0 = (V, E); 
where any two nodes (vi, vj) are connected by an edge in 
E iffa 0 = 1 in Mc~(Gcdg/0) .  

We apply the ® operation to the matrices generated in our 
example to obtain the e-connectivity-matrix 
Mc~(Gc~(.X/~i ~)) shown in Figure 8. From this matrix we 
construct the e-connectivity-graph Gc~(~/I) also shown 
in Figure 8. 

Finally, having Obtained the e-connectivity-graph, 
Gc~(g/~), we can generate an extended e-connectivity- 
graph, GEc~(.#f ~) = (V, E) where E = E I w E 2. A pair of  
nodes (vi, vj) in GEC~(~! Q can be connected by either an 
edge in E ~ or an edge in E~(but not both). 

1• 1 0 0 0 ~ 

1 1 0 1 0 

0 0 1 1 0 

0 1 1 1 0 

0 0 0 0 1 

® @ 

Figure 8. The s-connectivity-matrix Mcs(Gc,(pk! B)) 
and its corresponding a-connectivity-graph Gcs(,p°10. 

Edges in E l (represented in the graph as solid edges) are 
edges of  the type defined in graph Gcc(~/~). Edges in E 2 
(represented in the graph as dashed edges) are edges of  
the type defined in graph Gc(.Pk/~). Therefore a solid edge 
between any two nodes in an extended e-connectivity- 
graph, signifies that the polygons are physically 
connected and that L/(pi) -f(pj)] -< e. A dashed edge on the 
other hand signifies that [f(pi) -J~Pj)l -< e however no 
direct physical connectivity exists between the two 
polygons. 

We are now able to construct the extended e- 
connectivity-graph for our example. Nodes in the graph 
are connected by solid edges only if  the polygons are 
connected AND the difference o f  values of  the function 
on those polygons is less than or equal to 1. They are 
connected by dashed edges only if they are not connected 
by a solid edge AND if the difference of  values of  the 
function on those polygons is less than or equal to 1. The 
extended e-connectivity-graph for this example is shown 
in Figure 9. 

® 
Figure 9. The extended 6-connectivity-graph 

G~c,(P'j,). 
Based on this graph, we can find covers for the particular 
region by finding cliques (subsets of  the graph in which 
all nodes are connected to every other node). Cliques and 
their relevance to this problem are discussed in more 
detail in section 5. However, let us first explain the 
significance o f  having two types of  edges. 

If  we only have edges of  type E l in the graph, by finding 
a clique we find a set of  polygons where each polygon is 
connected to every other polygon and the difference of  
values of  the function on those polygons is less than e. 
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However, it is possible (and very likely) to have a 
grouping of  polygons where all values of  the function on 
those polygons are within g of  one another but some of  
the polygons are not directly connected. 

Thus we could, for example, have a case where there are 
three polygons, the first connected to the second and the 
second connected to the third. In this case, by having 
edges of  just type E ~, we would not be able to find that 
full clique. However, by adding edges o f  type E 2, we add 
additional information to the graph, which allows us to 
find cliques of  polygons even if they are not directly 
physically connected to each other in X'kf ~. As long as 
there exists a series of  solid edges between the nodes in a 
subset of  the graph, we know that those nodes are 
physically connected to each other in some way. We also 
know that the difference of  function values between two 
polygons connected by an edge is less than g. However 
this still does not mean that a group of  polygons can be 
formed. 

There can be a case where even though the difference of  
function values between the first polygon and the second 
is less than g and the difference of  function values 
between the second polygon and the third is less than e, a 
group of  polygons still cannot be formed. This is because 
there is no transitivity in the e-graph, therefore the above 
case does not imply that the difference between the first 
and third polygon is also less than g. 

By introducing edges of  type E 2 we can observe in the 
graph whether such transitivity exists. Thus if there is a 
graph for the above described case, and there is an edge 
of  type E 2 between polygon one and polygon three, then 
we know that the difference o f  function values of  these 
two polygons is also less than g. 

Therefore, if  we find a clique in the extended g- 
connectivity-graph which is connected by a continuous 
series of  solid edges, then we can be certain that all the 
polygons in that clique are connected in some fashion and 
that the difference of  function values between any two 
polygons is always less than e. 

Having generated the extended e-connectivity-graph for 
our example, we can now reason about the possible level 
1 covers for the region R. 

Since the graph is disconnected into two parts, each part 
is considered separately. We can refer to these two graphs 
as GIEC~(pkf ~) and G2EC~(~! ~), where G~r.c~(.~l ~) is the 
graph with four nodes and G2nc~(~/c) is the graph with 
node 5. 

Starting with the first graph, Gl~c~(ffl ~), we look for 
cliques in the graph which are connected by a continuous 
series of  solid edges. Nodes 2, 3 and 4 form a clique in 
this case, since each node is connected to every other 
node and there exists a continuous series of  solid edges 
between all three nodes. Therefore, polygons 2, 3 and 4 
can be considered for grouping together. Alternatively, 
nodes 1 and 2 form a clique as do nodes 3 and 4. Note 
however that nodes 1, 2, 3 and 4 do not form a clique 
even though there is a continuous series of  solid edges. 
This is because node 1 is not connected to every other 

node in graph GIEc~(pkf ~), which means that the 
difference of  function values between/:P; and P°3, as well 
as i f ;  and P°4 is greater than 1. 

Therefore on examination of  GIEc~(I~I ~), we can state 
that the possible groupings o f  polygons are either of  the 
following two possibilities. 

{P°2I,J P°3(..'/ P°4} "-~ PJ2 OR 

On examination of  G2EC~(pkl ~), we see that there is one 
possibility since there is only one node. 

In this case there are two possible covers for this 
example, they are shown in Figure 10 below. 

Figure 10. Two possible covers pt. 

5 Graph Cliques 

Definition (Garey and Johnson 1979) : Given a graph 
G = (V, E) and a positive integer J < IV[; does G contain a 
clique of  size J or more; i.e. a subset V'  c_ V such that 
IV'l - J and every two vertices in V'  are joined by an 
edge in E? An example is shown in Figure 11 below. 

Considering an extended e-connectivity-graph GEc~(ff'! ~), 
we look for subsets o f  vertices where each vertex in the 
subset is connected to another by an edge (either in E 1 or 
in E2). Thus we are looking for maximal subsets of  
vertices connected by a continuous set o f  edges E 1. 
Moreover, for each such subset, for each pair o f  vertices 
(vi, vj) which is not connected by en edge in E I, there 
must exist an edge in E 2. 

Figure 11. A four element clique 
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This problem is a variant of the CLIQUE problem, which 
is one of  well known NP-complete problems in literature 
(Garey and Johnson 1979, Bomze, Budinich, Pardalos 
and Pelillo 1999, Karp 1972, Hastad 1996, Boppana and 
Halldorsson 1992, Bomze 1997). It is in fact one of the 
first problems shown to be NP-complete (Karp 1972). 
Since it is NP-complete, exact algorithms are guaranteed 
to return a solution to the problem only in a time which 
increases exponentially with the number of vertices in the 
graph (Garey and Johnson, 1979). The difference 
between the problem presented here and the CLIQUE 
problem is that of an added restriction caused by the need 
to check that a subset V' is connected by a continuous set 
of solid edges. This however only adds to the complexity 
of the clique problem which in itself is already a difficult 
problem to solve. So far the best polynomial-time 
approximation algorithm for the clique problem has an 
approximation ratio of n l~o) (Boppana and Halldorsson 
1992). The problem is thus somewhat more complex 
than the maximum clique problem and thus still NP- 
complete (see proof below). 

Proof. 

We transform the CLIQUE ~ NP problem to minimum 
partition generation problem by using the extended c- 
connectivity-graph GEc/Pt/~). Given a graph G = (~, E) 
and a positive integer J_<l I~, we transform E to E' where 
E' = E 1 ~ E e. Since we need to find maximum cliques, J 
= I~ initially. I f  no clique is found of  size I I~, then J = J 
-1 until a clique is found. Additionally, a restriction is 
placed on the CLIQUE problem which states that the set 
of vertices in the clique have to be connected by a series 
of continuous edges in E 1, thus adding to the complexity 
of the problem. 

6 Conclusions 

In this paper we have discussed the background and 
motivation for aggregation of spatial data. We have 
illustrated in detail the minimum partition generation 
process and have shown that the problem is in general 
NP-complete. 

7 Future Work 

Because the computational complexity of the maximum 
clique problem is hard to approximate (Bomze, Budinich, 
Pardalos and Pelillo 1999), there has been substantial 
research towards devising heuristics (Pelillo 2001). 
Future work on Spatial Data Aggregation will include 
evaluation of the maximum clique heuristics or 
implementation of new heuristics for the purpose of 
finding minimum partitions. 

Additionally, in this paper we have only considered 
aggregations for queries on single functions. However 
conjunctive queries will be considered in the future, along 
with the two other problem formulations introduced in 
Section 3. Different options for error measurement will 
also have to be considered in the future. 
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